论文标题
代词解决方案的量子自然语言处理方法
A Quantum Natural Language Processing Approach to Pronoun Resolution
论文作者
论文摘要
我们使用具有软次指数模式的兰贝克微积分来建模和理由,例如Alaphora和Ellipsis。该逻辑的语义是通过使用截短的Fock空间获得的,这是我们以前的工作中开发的。我们通过新的字符串图描述了这些语义计算。 Fock Space语义的优势是,使用机器学习可以从大量数据中学习术语,并且可以在主流自然语言任务上进行实验。此外,由于从向量空间到量子电路的现有翻译,我们还可以在量子计算机及其模拟器(例如IBMQ范围)上学习这些术语。我们将现有的翻译扩展到Fock空间,并为话语关系开发量子电路语义。然后,我们在确定的代词分辨率任务中对这些电路的IBMQ进行了模拟,其中在解析过高音时记录了模型的最高精度。
We use the Lambek Calculus with soft sub-exponential modalities to model and reason about discourse relations such as anaphora and ellipsis. A semantics for this logic is obtained by using truncated Fock spaces, developed in our previous work. We depict these semantic computations via a new string diagram. The Fock Space semantics has the advantage that its terms are learnable from large corpora of data using machine learning and they can be experimented with on mainstream natural language tasks. Further, and thanks to an existing translation from vector spaces to quantum circuits, we can also learn these terms on quantum computers and their simulators, such as the IBMQ range. We extend the existing translation to Fock spaces and develop quantum circuit semantics for discourse relations. We then experiment with the IBMQ AerSimulations of these circuits in a definite pronoun resolution task, where the highest accuracies were recorded for models when the anaphora was resolved.