论文标题
关于沿其逆时空平均曲率的高空曲面的演变
On the evolution of hypersurfaces along their inverse spacetime mean curvature
论文作者
论文摘要
我们构建弱解,以在渐近平坦的最大初始数据集中沿其反向时空平均曲率沿其反向时空平均曲率演变。由于新流程的速度由时空不变式给出,因此它可以检测未来和过去捕获的明显视野。弱解决方案扩展了Huisken-Ilmanen开发的概念,用于逆平均曲率流以及Moore的逆空平均曲率流。
We construct weak solutions for the evolution of hypersurfaces along their inverse space-time mean curvature in asymptotically flat maximal initial data sets. As the speed of the new flow is given by a space-time invariant, it can detect both future- and past-trapped apparent horizons. The weak solution extends concepts developed by Huisken-Ilmanen for inverse mean curvature flow and by Moore for inverse null mean curvature flow.