论文标题

生物学驱动的深层生成模型,用于细胞型注释

A biology-driven deep generative model for cell-type annotation in cytometry

论文作者

Blampey, Quentin, Bercovici, Nadège, Dutertre, Charles-Antoine, Pic, Isabelle, André, Fabrice, Ribeiro, Joana Mourato, Cournède, Paul-Henry

论文摘要

细胞仪可实现异质种群中精确的单细胞表型。这些细胞类型传统上是通过手动门控来注释的,但是这种方法缺乏对批处理效应的可重复性和敏感性。同样,最新的细胞仪(光谱流或质量细胞仪)创建了丰富而高维的数据,这些数据通过手动门控进行分析变得具有挑战性且耗时。为了应对这些限制,我们引入了SCYAN(https://github.com/mics-lab/scyan),这是一个单-CELL细胞仪注释网络,该网络仅使用有关细胞仪面板的先前专家知识自动注释单元格类型。我们证明,SCYAN在多个公共数据集上大大优于相关的最新模型,同时更快,可解释。此外,SCYAN克服了几个互补任务,例如批处理效应,脱钉和人口发现。总体而言,该模型可以加速和简化细胞术中的细胞种群表征,定量和发现。

Cytometry enables precise single-cell phenotyping within heterogeneous populations. These cell types are traditionally annotated via manual gating, but this method suffers from a lack of reproducibility and sensitivity to batch-effect. Also, the most recent cytometers - spectral flow or mass cytometers - create rich and high-dimensional data whose analysis via manual gating becomes challenging and time-consuming. To tackle these limitations, we introduce Scyan (https://github.com/MICS-Lab/scyan), a Single-cell Cytometry Annotation Network that automatically annotates cell types using only prior expert knowledge about the cytometry panel. We demonstrate that Scyan significantly outperforms the related state-of-the-art models on multiple public datasets while being faster and interpretable. In addition, Scyan overcomes several complementary tasks such as batch-effect removal, debarcoding, and population discovery. Overall, this model accelerates and eases cell population characterisation, quantification, and discovery in cytometry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源