论文标题

从2D观察数据中重建3D湍流的深度学习方法

A deep-learning approach for reconstructing 3D turbulent flows from 2D observation data

论文作者

Yousif, Mustafa Z., Yu, Linqi, Hoyas, Sergio, Vinuesa, Ricardo, Lim, HeeChang

论文摘要

湍流是一种复杂的现象,具有混乱的性质,具有多个时空尺度,使对湍流的预测成为一个具有挑战性的话题。如今,可以通过实验测量和数值模拟来生成大量的高保真数据库,但是目前无法在全尺度应用程序中获得此类准确的数据。这激发了利用可用数据的子集的深入学习,以减少重建此类全尺度应用程序中全流量的所需成本。在这里,我们开发了一个基于生成的对流网络(GAN)的模型,以从流量数据中重建三维速度场,该流量由未配对的二维速度观察的跨平面表示。该模型可以通过准确的流量结构,统计和光谱成功地重建流场。结果表明,我们的模型可以成功地用于从二维实验测量中重建三维流。因此,可以实现实验设置成本的显着降低。

Turbulence is a complex phenomenon that has a chaotic nature with multiple spatio-temporal scales, making predictions of turbulent flows a challenging topic. Nowadays, an abundance of high-fidelity databases can be generated by experimental measurements and numerical simulations, but obtaining such accurate data in full-scale applications is currently not possible. This motivates utilising deep learning on subsets of the available data to reduce the required cost of reconstructing the full flow in such full-scale applications. Here, we develop a generative-adversarial-network (GAN)-based model to reconstruct the three-dimensional velocity fields from flow data represented by a cross-plane of unpaired two-dimensional velocity observations. The model could successfully reconstruct the flow fields with accurate flow structures, statistics and spectra. The results indicate that our model can be successfully utilised for reconstructing three-dimensional flows from two-dimensional experimental measurements. Consequently, a remarkable reduction of the experimental setup cost can be achieved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源