论文标题

用于深泡检测的混合变压器网络

Hybrid Transformer Network for Deepfake Detection

论文作者

Khan, Sohail Ahmed, Dang-Nguyen, Duc-Tien

论文摘要

当今,DeepFake Media正变得广泛,因为具有易于使用的工具和移动应用程序可以生成现实的DeepFake视频/图像,而无需任何技术知识。随着在不久的将来的这一技术领域的进一步发展,Deepfake媒体的数量和质量也有望蓬勃发展,同时使DeepFake Media成为传播错误/虚假信息的可能新的实用工具。由于这些担忧,深层媒体检测工具已成为必要。在这项研究中,我们提出了一个新型混合变压器网络,利用早期特征融合策略进行深击视频检测。我们的模型采用两个不同的CNN网络,即(1)Xceptionnet和(2)效率网络B4作为特征提取器。我们在FaceForensics ++,DFDC基准测试中以端到端方式训练两个功能提取器。我们的模型在具有相对简单的体系结构的同时,在对FaceForensics ++和DFDC基准进行评估时,取得了与其他更先进的最先进方法相当的结果。除此之外,我们还提出了新颖的面部切割增加以及随机切割的增加。我们表明,提出的增强改善了模型的检测性能并减少过度拟合。除此之外,我们还表明我们的模型能够从少量数据中学习。

Deepfake media is becoming widespread nowadays because of the easily available tools and mobile apps which can generate realistic looking deepfake videos/images without requiring any technical knowledge. With further advances in this field of technology in the near future, the quantity and quality of deepfake media is also expected to flourish, while making deepfake media a likely new practical tool to spread mis/disinformation. Because of these concerns, the deepfake media detection tools are becoming a necessity. In this study, we propose a novel hybrid transformer network utilizing early feature fusion strategy for deepfake video detection. Our model employs two different CNN networks, i.e., (1) XceptionNet and (2) EfficientNet-B4 as feature extractors. We train both feature extractors along with the transformer in an end-to-end manner on FaceForensics++, DFDC benchmarks. Our model, while having relatively straightforward architecture, achieves comparable results to other more advanced state-of-the-art approaches when evaluated on FaceForensics++ and DFDC benchmarks. Besides this, we also propose novel face cut-out augmentations, as well as random cut-out augmentations. We show that the proposed augmentations improve the detection performance of our model and reduce overfitting. In addition to that, we show that our model is capable of learning from considerably small amount of data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源