论文标题
QCD总规则分析磁化物质中的重Quarkonium状态 - (反)磁催化的影响
QCD sum rule analysis of Heavy Quarkonium states in magnetized matter -- effects of (inverse) magnetic catalysis
论文作者
论文摘要
使用手性有效模型和QCD Sum规则方法的合并方法,在磁化的,不对称的核培养基中研究了$ 1S $和$ 1p $ $ $ $的$ $ $ $ $ $。这些是根据在手性模型中计算的中等内部标量和Twist-2 Gluon冷凝物计算得出的。通过标量DILATON场模拟了Gluon冷凝物,通过尺度不变性破坏对数电位,在模型中引入了$χ$。考虑到标量字段是古典的,dilaton字段,$χ$,非怪物等iSscalar,$σ(\ sim(\ sim(\ langle \ bar u u \ u \ rangle +\ langle +\ langle \ langle \ bar d d d \ rangle)$ $δ(\ sim(\ langle \ bar u u \ rangle- \ langle \ bar d d \ rangle))$字段,是通过求解其运动耦合方程(源自手性lagrangian)的。在本研究中考虑了由于狄拉克海以及质子的兰道能水平以及核的非零异常磁矩的影响。在存在外部磁场的情况下,在两个Quarkonia部门的媒介中的纵向成分和伪内层中的纵向成分之间也存在混合,从而导致$ j/ψ^{||} {|| | |(| c $)的质量上升(下降)。这些可能显示在实验性观察物中,例如,在RHIC和LHC的非中心,超相关的重离子碰撞实验中的DiLepton光谱,在该实验中产生的磁场很大。
The masses of the $1S$ and $1P$ states of heavy quarkonia are investigated in the magnetized, asymmetric nuclear medium, accounting for the Dirac sea effects, using a combined approach of chiral effective model and QCD sum rule method. These are calculated from the in-medium scalar and twist-2 gluon condensates, calculated within the chiral model. The gluon condensate is simulated through the scalar dilaton field, $χ$ introduced in the model through a scale-invariance breaking logarithmic potential. Considering the scalar fields to be classical, the dilaton field, $χ$, the non-strange isoscalar, $σ(\sim (\langle \bar u u\rangle +\langle \bar d d\rangle ))$, strange isoscalar, $ζ(\sim \langle \bar s s\rangle)$ and non-strange isovector, $δ(\sim (\langle\bar u u\rangle-\langle\bar d d\rangle)$) fields, are obtained by solving their coupled equations of motion, as derived from the chiral model Lagrangian. The effects of magnetic field due to the Dirac sea as well as the Landau energy levels of protons, and the non-zero anomalous magnetic moments of the nucleons are considered in the present study. In presence of an external magnetic field, there is also mixing between the longitudinal component of the vector meson and pseudoscalar meson (PV mixing) in both quarkonia sectors, leading to a rise (drop) of the masses of $J/ψ^{||}\ (η_c$) and $Υ^{||}(1S)\ (η_b$) states. These might show in the experimental observables, e.g., the dilepton spectra in the non-central, ultra-relativistic heavy ion collision experiments at RHIC and LHC, where the produced magnetic field is huge.