论文标题

什么代表时空?关于实质性主义\ emph {vs。}的关系主义和重力能量的下面是什么?

What Represents Space-time? And What Follows for Substantivalism \emph{vs.} Relationalism and Gravitational Energy?

论文作者

Pitts, J. Brian

论文摘要

代表GR中时空的问题,重力能量的状态,实质主义主义者的问题以及(非)引力的(非)特殊状态是相互关联的。如果时空具有能量摩托车,那么时空是实质性的。避免实质主义结论否认能量指标的两种现有方法是时空或否认存在引力能量的一部分。 Feynman将对重力能量的疑问与GR-Excementism联系起来;粒子物理平等主义鼓励对重力能量的现实主义。 This essay proposes a third view, involving a particle physics-inspired non-perturbative split that characterizes space-time with a constant background _matrix_ (not a metric), avoiding the inference from gravitational energy to substantivalism: space-time is (M, eta), where eta=diag(-1,1,1,1) is a spatio-temporally constant numerical signature matrix (already used in GR with spinors).带有任何引力能的引力电势是G_(Munu)(X)-Eta(延伸到场重新定义),这是一个带有张力的谎言衍生物和消失的协变量衍生物的_Affine_几何对象。这种非扰动拆分允许强大的领域,任意坐标和任意拓扑结构,因此几乎符合任何标准。与更熟悉的剃须刀背景不同,它不涉及额外的量规自由,因此缺乏它们的晦涩和地毯肿块。 在讨论了库里尔(Curiel)对节能的杰出主义拒绝拒绝之后,探索了对伪转化器的两个传统反对意见,坐标依赖性和非唯一性。两种异议都是尚无定论的,而且越来越弱。对Noether定理(无限许多能量)的字面解释很大程度上回答了Schroedinger的假阴性坐标依赖性问题。鲍尔的非唯一性(误报)反对有几个答案。

The questions of what represents space-time in GR, the status of gravitational energy, the substantivalist-relationalist issue, and the (non)exceptional status of gravity are interrelated. If space-time has energy-momentum, then space-time is substantival. Two extant ways to avoid the substantivalist conclusion deny that the energy-bearing metric is part of space-time or deny that gravitational energy exists. Feynman linked doubts about gravitational energy to GR-exceptionalism; particle physics egalitarianism encourages realism about gravitational energy. This essay proposes a third view, involving a particle physics-inspired non-perturbative split that characterizes space-time with a constant background _matrix_ (not a metric), avoiding the inference from gravitational energy to substantivalism: space-time is (M, eta), where eta=diag(-1,1,1,1) is a spatio-temporally constant numerical signature matrix (already used in GR with spinors). The gravitational potential, bearing any gravitational energy, is g_(munu)(x)-eta (up to field redefinitions), an _affine_ geometric object with a tensorial Lie derivative and a vanishing covariant derivative. This non-perturbative split permits strong fields, arbitrary coordinates, and arbitrary topology, and hence is pure GR by almost any standard. This razor-thin background, unlike more familiar ones, involves no extra gauge freedom and so lacks their obscurities and carpet lump-moving. After a discussion of Curiel's GR exceptionalist rejection of energy conservation, the two traditional objections to pseudotensors, coordinate dependence and nonuniqueness, are explored. Both objections are inconclusive and getting weaker. A literal interpretation of Noether's theorem (infinitely many energies) largely answers Schroedinger's false-negative coordinate dependence problem. Bauer's nonuniqueness (false positive) objection has several answers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源