论文标题

基于湍流边界层中壁热通量的速度场预测的完全卷积网络

Fully convolutional networks for velocity-field predictions based on the wall heat flux in turbulent boundary layers

论文作者

Guastoni, L., Balasubramanian, A. G., Foroozan, F., Güemes, A., Ianiro, A., Discetti, S., Schlatter, P., Azizpour, H., Vinuesa, R.

论文摘要

事实证明,完全跨斜神经网络(FCN)可有效预测不同壁正常位置在壁上测得的量数量在不同壁正常位置的瞬时状态。在Guastoni等。 [J。流体机械。 928,A27(2021)],我们专注于壁剪应力分布作为输入,在实验中很难测量。为了克服这一限制,我们引入了一个模型,该模型可以从被动标量中以输入壁上的热量频率输入。考虑了四个不同的prandtl数字$ pr =ν/α=(1,2,4,6)$(其中$ν$是运动粘度,而$α$是标量数量的热扩散率)。由于可以在实验设置中执行精确的热量测量值,因此模拟了湍流边界层:首先,我们将网络训练在恰当地修饰的DNS数据上,然后我们将其调整为实验数据。最后,我们对在水隧道中采样的实验数据进行测试。这些预测代表了转移学习在模拟训练的神经网络的实验数据上的首次应用。这为实施实际应用中的流量实施了非侵入性传感方法铺平了道路。

Fully-convolutional neural networks (FCN) were proven to be effective for predicting the instantaneous state of a fully-developed turbulent flow at different wall-normal locations using quantities measured at the wall. In Guastoni et al. [J. Fluid Mech. 928, A27 (2021)], we focused on wall-shear-stress distributions as input, which are difficult to measure in experiments. In order to overcome this limitation, we introduce a model that can take as input the heat-flux field at the wall from a passive scalar. Four different Prandtl numbers $Pr = ν/α= (1,2,4,6)$ are considered (where $ν$ is the kinematic viscosity and $α$ is the thermal diffusivity of the scalar quantity). A turbulent boundary layer is simulated since accurate heat-flux measurements can be performed in experimental settings: first we train the network on aptly-modified DNS data and then we fine-tune it on the experimental data. Finally, we test our network on experimental data sampled in a water tunnel. These predictions represent the first application of transfer learning on experimental data of neural networks trained on simulations. This paves the way for the implementation of a non-intrusive sensing approach for the flow in practical applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源