论文标题
关于商人奇点的联系链接的填充
On fillings of contact links of quotient singularities
论文作者
论文摘要
我们使用浮子理论(包括共填充,温斯坦填充物,浓填充物,精确的填充物和精确的Orbifold填充物)来研究填充物的几个方面,以探讨一般商奇异的链接,重点是不存在隔离终端商品的触点链接的精确填充链接。我们提供了孤立的终端奇点的广泛列表,其接触链接并非完全可填充,包括$ \ Mathbb {c}^n/($ n \ ge 3 $ for $ n \ ge 3 $,都会构成EliAshberg的cositient of Botient of Comploce Group Active and Superient $ sue $ sue $ suellient $ suellient $ suellient $ sue(2)尺寸$ 3 $。我们还获得了某些孤立终端奇异点的接触链接的精确的Orbifold填充物的Orbifold差异类型的唯一性。
We study several aspects of fillings for links of general quotient singularities using Floer theory, including co-fillings, Weinstein fillings, strong fillings, exact fillings and exact orbifold fillings, focusing on non-existence of exact fillings of contact links of isolated terminal quotient singularities. We provide an extensive list of isolated terminal quotient singularities whose contact links are not exactly fillable, including $\mathbb{C}^n/(\mathbb{Z}/2)$ for $n\ge 3$, which settles a conjecture of Eliashberg, quotient singularities from general cyclic group actions and finite subgroups of $SU(2)$, and all terminal quotient singularities in complex dimension $3$. We also obtain uniqueness of the orbifold diffeomorphism type of exact orbifold fillings of contact links of some isolated terminal quotient singularities.