论文标题
语义分解网络具有牙齿分割的对比和结构约束
Semantic decomposition Network with Contrastive and Structural Constraints for Dental Plaque Segmentation
论文作者
论文摘要
从医用试剂染色图像中分割牙齿斑块为诊断和确定随访治疗计划提供了有价值的信息。然而,准确的牙齿斑块分割是一项具有挑战性的任务,需要识别牙齿和牙齿受到语义蓝区域(即牙齿和牙齿斑块之间的困惑边界)以及实例形状的复杂变化的牙齿的牙齿,而这些形状并未通过现有方法完全解决。因此,我们提出了一个语义分解网络(SDNET),该网络介绍了两个单任务分支,以分别解决牙齿和牙齿斑块的分割,并设计了其他约束,以学习每个分支的类别特异性特征,从而促进语义分解并提高牙与斑块分割的性能。具体而言,SDNET以分裂方式学习了两个单独的分割分支,牙齿和牙齿牙菌斑将它们之间的纠缠关系解除。指定类别的每个分支都倾向于产生准确的分割。为了帮助这两个分支更好地关注特定类别的特征,进一步提出了两个约束模块:1)通过最大化不同类别表示之间的距离,以减少语义Blur区域对特征提取物的负面影响,从而学习区分性特征表示; 2)结构约束模块(SCM)通过监督边界感知的几何约束,为各种形状提供完整的结构信息。此外,我们构建了一个大规模的开源染色斑块分割数据集(SDPSEG),该数据集为牙齿和牙齿提供高质量的注释。 SDPSEG数据集的实验结果显示SDNET达到了最先进的性能。
Segmenting dental plaque from images of medical reagent staining provides valuable information for diagnosis and the determination of follow-up treatment plan. However, accurate dental plaque segmentation is a challenging task that requires identifying teeth and dental plaque subjected to semantic-blur regions (i.e., confused boundaries in border regions between teeth and dental plaque) and complex variations of instance shapes, which are not fully addressed by existing methods. Therefore, we propose a semantic decomposition network (SDNet) that introduces two single-task branches to separately address the segmentation of teeth and dental plaque and designs additional constraints to learn category-specific features for each branch, thus facilitating the semantic decomposition and improving the performance of dental plaque segmentation. Specifically, SDNet learns two separate segmentation branches for teeth and dental plaque in a divide-and-conquer manner to decouple the entangled relation between them. Each branch that specifies a category tends to yield accurate segmentation. To help these two branches better focus on category-specific features, two constraint modules are further proposed: 1) contrastive constraint module (CCM) to learn discriminative feature representations by maximizing the distance between different category representations, so as to reduce the negative impact of semantic-blur regions on feature extraction; 2) structural constraint module (SCM) to provide complete structural information for dental plaque of various shapes by the supervision of an boundary-aware geometric constraint. Besides, we construct a large-scale open-source Stained Dental Plaque Segmentation dataset (SDPSeg), which provides high-quality annotations for teeth and dental plaque. Experimental results on SDPSeg datasets show SDNet achieves state-of-the-art performance.