论文标题
trappist-1E的气候灵敏度和可变性比地球更大
Greater climate sensitivity and variability on TRAPPIST-1e than Earth
论文作者
论文摘要
岩石系外行星的气氛几乎以天文观测为特征,部分原因是詹姆斯·韦伯太空望远镜的调试。这些观察结果迫使我们在航行中了解宜居行星。以此目的,我们通过分析了潮汐锁定的Trappist-1E系外行星的Exocam模型模拟(一种地球样的Aqua-Aqua-Planet and Earth and Earth and Eartialt ofereagam模型),研究了CO $ $ _2 $ agt $ agt $ pco部分压力(PCO $ _2 $)对系外行星的气候变异性的影响。首先,我们将行星之间的差异与它们的基本参数联系起来。然后,我们将地球类似物和Trappist-1E表面温度和降水量与PCO $ _2 $的敏感性进行比较。我们的模拟表明,Trappist-1E温度的气候和极端是$ \ sim $ \ sim $ 1.5倍对PCO $ _2 $相对于地球的敏感。降水敏感性在很大程度上取决于所分析的特定区域。实际上,trappist-1e的中纬度和赤道子赛车区附近的降水对pco $ _2 $更敏感,并且在trappist-1e中,降水敏感性为$ \ sim $ 2倍。动态系统的观点提供了有关大气如何在相空间中发展的信息,它提供了其他见解。值得注意的是,PCO $ _2 $的增加导致两个行星的大气持久性增加,而Trappist-1E的持久性比地球对PCO $ _2 $更敏感。我们得出的结论是,Trappist-1E的气候可能对PCO $ _2 $更加敏感,尤其是在日期。这项研究记录了一种新的途径,以了解不同行星参数对潜在可居住的系外行星和地球气候变化的影响。
The atmospheres of rocky exoplanets are close to being characterized by astronomical observations, in part due to the commissioning of the James Webb Space Telescope. These observations compel us to understand exoplanetary atmospheres, in the voyage to find habitable planets. With this aim, we investigate the effect that CO$_2$ partial pressure (pCO$_2$) has on exoplanets' climate variability, by analyzing results from ExoCAM model simulations of the tidally locked TRAPPIST-1e exoplanet, an Earth-like aqua-planet and Earth itself. First, we relate the differences between the planets to their elementary parameters. Then, we compare the sensitivity of the Earth analogue and TRAPPIST-1e's surface temperature and precipitation to pCO$_2$. Our simulations suggest that the climatology and extremes of TRAPPIST-1e's temperature are $\sim$1.5 times more sensitive to pCO$_2$ relative to Earth. The precipitation sensitivity strongly depends on the specific region analyzed. Indeed, the precipitation near mid-latitude and equatorial sub-stellar regions of TRAPPIST-1e is more sensitive to pCO$_2$, and the precipitation sensitivity is $\sim$2 times larger in TRAPPIST-1e. A dynamical systems perspective, which provides information about how the atmosphere evolves in phase-space, provides additional insights. Notably, an increase in pCO$_2$, results in an increase in atmospheric persistence on both planets, and the persistence of TRAPPIST-1e is more sensitive to pCO$_2$ than Earth. We conclude that the climate of TRAPPIST-1e may be more sensitive to pCO$_2$, particularly on its dayside. This study documents a new pathway for understanding the effect that varying planetary parameters have on the climate variability of potentially habitable exoplanets and on Earth.