论文标题

fock-bargmann表示的分解代数

Resolvent algebra in Fock-Bargmann representation

论文作者

Bauer, Wolfram, Fulsche, Robert

论文摘要

D. Buchholz和H. Grundling引入了与Sympletic Space $(X,σ)$相关的分解代数$ \ Mathcal {R}(X,σ)$,作为量子力学中规范通勤关系(CCR)的方便模型。我们首先研究了$ \ Mathcal {r}(\ Mathbb {c}^n,σ)$的代表,并在Fock-Bargmann空间上的整个Toeplitz代数内的标准符号表格$σ$。我们证明$ \ Mathcal {r}(\ Mathbb {C}^n,σ)$本身是一个toeplitz代数。在R. Werner的对应理论的意义上,我们确定了其相应的移位不变和符号的封闭空间。最后,我们讨论了分解代数$ \ mathcal {r}(\ Mathcal {h},\tildeσ)$的无限尺寸符号分离的Hilbert Space $(\ Mathcal {h},\Tildeσ)$。更准确地说,我们在无限的许多变量中,在Fock-Bargmann空间上找到了$ \ Mathcal {r}(\ Mathcal {h},\tildeσ)$的表示形式。

The resolvent algebra $\mathcal{R}(X, σ)$ associated to a symplectic space $(X, σ)$ was introduced by D. Buchholz and H. Grundling as a convenient model of the canonical commutation relation (CCR) in quantum mechanics. We first study a representation of $\mathcal{R}(\mathbb{C}^n, σ)$ with the standard symplectic form $σ$ inside the full Toeplitz algebra over the Fock-Bargmann space. We prove that $\mathcal{R}(\mathbb{C}^n, σ)$ itself is a Toeplitz algebra. In the sense of R. Werner's correspondence theory we determine its corresponding shift-invariant and closed space of symbols. Finally, we discuss a representation of the resolvent algebra $\mathcal{R}(\mathcal{H}, \tildeσ)$ for an infinite dimensional symplectic separable Hilbert space $(\mathcal{H}, \tildeσ)$. More precisely, we find a representation of $\mathcal{R}(\mathcal{H}, \tildeσ)$ inside the full Toeplitz algebra over the Fock-Bargmann space in infinitely many variables.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源