论文标题

学会推断反事实:用于估计多种不平衡治疗效果的元学习

Learning to Infer Counterfactuals: Meta-Learning for Estimating Multiple Imbalanced Treatment Effects

论文作者

Zhou, Guanglin, Yao, Lina, Xu, Xiwei, Wang, Chen, Zhu, Liming

论文摘要

我们定期考虑在实践中回答反事实问题,例如“糖尿病患者会选择另一种药物,会更好吗?”。观察性研究在回答此类问题的显着性上增长,因为它们的广泛积累和比随机对照试验(RCT)相对容易的获取。最近,一些作品将表示和域的适应性引入了反事实推断。但是,大多数目前的作品都集中在二进制治疗的设置上。他们都没有认为不同治疗的样本量不平衡,尤其是由于固有的用户偏好,某些治疗组中的数据示例相对有限。在本文中,我们为反事实推断设计了一种新的算法框架,从元学习来估算单个治疗效果(元地铁)以填补上述研究差距,尤其是考虑多种不平衡治疗方法。具体而言,我们将反事实推断的治疗组之间的数据发作视为元学习任务。我们从一组有足够样品的源治疗组中训练一个元学习者,并通过梯度下降来更新该模型,而样品在目标治疗中的样本有限。此外,我们引入了两个互补的损失。一个是多种来源治疗的监督损失。提出了在各个治疗组之间对齐潜在分布的另一个损失,以减少差异。我们在两个现实世界数据集上执行实验,以评估推理准确性和泛化能力。实验结果表明,模型元地铁与最先进的方法相匹配。

We regularly consider answering counterfactual questions in practice, such as "Would people with diabetes take a turn for the better had they choose another medication?". Observational studies are growing in significance in answering such questions due to their widespread accumulation and comparatively easier acquisition than Randomized Control Trials (RCTs). Recently, some works have introduced representation learning and domain adaptation into counterfactual inference. However, most current works focus on the setting of binary treatments. None of them considers that different treatments' sample sizes are imbalanced, especially data examples in some treatment groups are relatively limited due to inherent user preference. In this paper, we design a new algorithmic framework for counterfactual inference, which brings an idea from Meta-learning for Estimating Individual Treatment Effects (MetaITE) to fill the above research gaps, especially considering multiple imbalanced treatments. Specifically, we regard data episodes among treatment groups in counterfactual inference as meta-learning tasks. We train a meta-learner from a set of source treatment groups with sufficient samples and update the model by gradient descent with limited samples in target treatment. Moreover, we introduce two complementary losses. One is the supervised loss on multiple source treatments. The other loss which aligns latent distributions among various treatment groups is proposed to reduce the discrepancy. We perform experiments on two real-world datasets to evaluate inference accuracy and generalization ability. Experimental results demonstrate that the model MetaITE matches/outperforms state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源