论文标题

MM-gnn:混合图形的图形神经网络朝着建模邻里特征分布

MM-GNN: Mix-Moment Graph Neural Network towards Modeling Neighborhood Feature Distribution

论文作者

Bi, Wendong, Du, Lun, Fu, Qiang, Wang, Yanlin, Han, Shi, Zhang, Dongmei

论文摘要

图形神经网络(GNN)通过汇总邻居的信息在图表中表现出表达性能。最近,一些研究讨论了在图上建模邻域分布的重要性。但是,大多数现有的GNN通过单个统计量(例如,均值,最大,sum)汇总了邻居的特征,该特征失去了与邻居特征分布相关的信息,从而降低了模型性能。在本文中,受统计理论的力矩方法的启发,我们建议用多阶矩对邻居的特征分布进行建模。我们设计了一种新型的GNN模型,即混合矩图神经网络(MM-gnn),其中包括多阶矩嵌入(MME)模块和一个基于元素的基于元素的矩适配器模块。 MM-gnn首先将每个节点作为签名计算邻居的多阶矩,然后使用基于元素的基于注意的矩适配器将较大的权重分配给每个节点的重要矩,并更新节点表示。我们对15个真实图表(包括社交网络,引文网络和网页网络等)进行了广泛的实验,以评估我们的模型,结果证明了MM-GNN优于现有的最新模型。

Graph Neural Networks (GNNs) have shown expressive performance on graph representation learning by aggregating information from neighbors. Recently, some studies have discussed the importance of modeling neighborhood distribution on the graph. However, most existing GNNs aggregate neighbors' features through single statistic (e.g., mean, max, sum), which loses the information related to neighbor's feature distribution and therefore degrades the model performance. In this paper, inspired by the method of moment in statistical theory, we propose to model neighbor's feature distribution with multi-order moments. We design a novel GNN model, namely Mix-Moment Graph Neural Network (MM-GNN), which includes a Multi-order Moment Embedding (MME) module and an Element-wise Attention-based Moment Adaptor module. MM-GNN first calculates the multi-order moments of the neighbors for each node as signatures, and then use an Element-wise Attention-based Moment Adaptor to assign larger weights to important moments for each node and update node representations. We conduct extensive experiments on 15 real-world graphs (including social networks, citation networks and web-page networks etc.) to evaluate our model, and the results demonstrate the superiority of MM-GNN over existing state-of-the-art models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源