论文标题
线性SDE估计,卡尔曼过滤及其与最佳控制的关系
The reproducing kernel Hilbert spaces underlying linear SDE Estimation, Kalman filtering and their relation to optimal control
论文作者
论文摘要
通常说控制和估计问题是双重性的。最近,在(Aubin-Frankowski,2021)中,我们通过关注受控轨迹的希尔伯特空间,从而在线性界面最佳控制中发现了新的再现核,从而可以方便地处理状态约束和会议点。现在,我们将此观点扩展到估计问题,其中已知内核是随机过程的协方差。在这里,马尔可夫高斯过程源于描述连续时间动力学和观测值的线性随机微分方程。接受广泛的护理以要求对操作员的最小可逆性要求,我们为这些协方差提供了新颖的公式。我们还确定了它们繁殖的核Hilbert空间,从而强调了向前时间轨迹和向后信息向量的空间之间的对称性。这两个空间在变异分析中滤波到Sobolev空间起着模拟作用,并允许通过直接变异参数恢复Kalman估计值。为了进行比较,我们通过基于创新过程的更多经典论证来恢复Kalman过滤器和更平滑的公式。扩展到离散时间观测或无限维状态,即艰难的技术,将是简单的。
It is often said that control and estimation problems are in duality. Recently, in (Aubin-Frankowski,2021), we found new reproducing kernels in Linear-Quadratic optimal control by focusing on the Hilbert space of controlled trajectories, allowing for a convenient handling of state constraints and meeting points. We now extend this viewpoint to estimation problems where it is known that kernels are the covariances of stochastic processes. Here, the Markovian Gaussian processes stem from the linear stochastic differential equations describing the continuous-time dynamics and observations. Taking extensive care to require minimal invertibility requirements on the operators, we give novel explicit formulas for these covariances. We also determine their reproducing kernel Hilbert spaces, stressing the symmetries between a space of forward-time trajectories and a space of backward-time information vectors. The two spaces play an analogue role for filtering to Sobolev spaces in variational analysis, and allow to recover the Kalman estimate through a direct variational argument. For comparison, we then recover the Kalman filter and smoother formulas through more classical arguments based on the innovation process. Extension to discrete-time observations or infinite-dimensional state, tough technical, would be straightforward.