论文标题
Hessian总变化正则化基于Delaunay-Triangulation学习
Delaunay-Triangulation-Based Learning with Hessian Total-Variation Regularization
论文作者
论文摘要
回归是监督学习中解决的核心问题之一。整流的线性单元(Relu)神经网络会产生连续和分段线性(CPWL)映射,并且是解决回归问题的最新方法。在本文中,我们提出了一种利用CPWL函数表达的替代方法。与深度神经网络相反,我们的CPWL参数化确保了稳定性,并且是可解释的。我们的方法依赖于通过Delaunay三角剖分对CPWL函数的域进行分配。三角剖分的顶点的函数值是我们的可学习参数,并独特地识别CPWL函数。将学习方案制定为变分问题,我们使用Hessian总变异(HTV)作为常规器来偏爱几乎没有仿射的CPWL功能。通过这种方式,我们通过单个超参数控制模型的复杂性。通过开发一个计算框架来计算通过三角剖分参数参数的任何CPWL函数的HTV,我们将学习问题离散为概括的绝对绝对收缩和选择操作员(LASSO)。我们的实验验证了在低维情况下我们的方法的使用。
Regression is one of the core problems tackled in supervised learning. Rectified linear unit (ReLU) neural networks generate continuous and piecewise-linear (CPWL) mappings and are the state-of-the-art approach for solving regression problems. In this paper, we propose an alternative method that leverages the expressivity of CPWL functions. In contrast to deep neural networks, our CPWL parameterization guarantees stability and is interpretable. Our approach relies on the partitioning of the domain of the CPWL function by a Delaunay triangulation. The function values at the vertices of the triangulation are our learnable parameters and identify the CPWL function uniquely. Formulating the learning scheme as a variational problem, we use the Hessian total variation (HTV) as regularizer to favor CPWL functions with few affine pieces. In this way, we control the complexity of our model through a single hyperparameter. By developing a computational framework to compute the HTV of any CPWL function parameterized by a triangulation, we discretize the learning problem as the generalized least absolute shrinkage and selection operator (LASSO). Our experiments validate the usage of our method in low-dimensional scenarios.