论文标题
麦凯箭和分解
McKay quivers and decomposition
论文作者
论文摘要
当$ d $ - 空间尺寸中的量子场理论具有全局$(D-1)$ - 形式对称性时,它可以分解为其他理论的脱节工会。这反映在理论的物理量中,可用于研究成分理论的特性。在本说明中,我们强调了Orbifold $σ$ - 模型的分解与断开的McKay Quivers之间的等效性。具体而言,我们在众多示例中表明,麦凯箭袋的每个组成部分都可以通过分解公式给出确定的几何含义。此外,对于Orbifold组的微不足道作用部分是核心的,我们给出了Quivers的纯粹组和代表理论推导。不出所料,所产生的颤动与“带” Gerbes上的$σ$模型兼容。
When a quantum field theory in $d$-spacetime dimensions possesses a global $(d-1)$-form symmetry, it can decompose into disjoint unions of other theories. This is reflected in the physical quantities of the theory and can be used to study properties of the constituent theories. In this note we highlight the equivalence between the decomposition of orbifold $σ$-models and disconnected McKay quivers. Specifically, we show in numerous examples that each component of a McKay quiver can be given definitive geometric meaning through the decomposition formulae. In addition, we give a purely group and representation theoretic derivation of the quivers for the cases where the trivially acting part of the orbifold group is central. As expected, the resulting quivers are compatible with the case of $σ$-models on `banded' gerbes.