论文标题
合适的理想是循环呈现模块的直接总和的交换环
Commutative rings whose proper ideals are direct sum of cyclically presented modules
论文作者
论文摘要
I. M. Isaacs引起的一个著名结果指出,如果一个换向的环$ r $具有每个主要理想的财产,那么$ r $的每个理想都是主要的。这激发了指环理论家研究的通勤环,每个理想都是周期性呈现模块的直接总和。在本文中,我们研究的是,其理想是周期性呈现模块的直接总和。
A famous result due to I. M. Isaacs states that if a commutative ring $R$ has the property that every prime ideal is principal, then every ideal of $R$ is principal. This motivates ring theorists to study commutative rings for which every ideal is a direct sum of cyclically presented modules. In this paper, we study commutative rings whose ideals are direct sum of cyclically presented modules.