论文标题
混乱和双方纠缠
Chaos and bi-partite entanglement between Bose-Joephson junctions
论文作者
论文摘要
研究了两个弱耦合的骨髓约瑟夫森连接处的纠缠,该连接与系统的经典混合phasespace结构有关,该结构包含与对称性相关的常规岛,这些岛屿被混乱分开。计算了系统能量本质状态的对称分解的纠缠光谱和双方纠缠熵,并将其与表现出完全或部分呈现的随机状态的预期结构进行了比较。由于存在限制了能量壳上的磨牙化的绝热不变性,因此混乱的征材的纠缠谱与广义Gibbs合奏的微观结构相匹配。这些准化学状态的对称分辨纠缠熵由均值最大纠缠项和由于组成子系统的有限尺寸而引起的波动校正组成。本征态的总双方纠缠熵与它们的混沌性相关。岛支持的特征状态是宏观的Schrödinger猫状态,用于颗粒和激发,纠缠较低。
The entanglement between two weakly coupled bosonic Josephson junctions is studied in relation to the classical mixed phasespace structure of the system, containing symmetry-related regular islands separated by chaos. The symmetry-resolved entanglement spectrum and bi-partite entanglement entropy of the system's energy eigenstates are calculated and compared to their expected structure for random states that exhibit complete or partial ergodicity. The entanglement spectra of chaos-supported eigenstates match the microcanonical structure of a Generalized Gibbs Ensemble due to the existence of an adiabatic invariant that restricts ergodization on the energy shell. The symmetry-resolved entanglement entropy of these quasistochastic states consists of a mean-field maximum entanglement term and a fluctuation correction due to the finite size of the constituent subsystems. The total bi-partite entanglement entropy of the eigenstates correlates with their chaoticity. Island-supported eigenstates are macroscopic Schrödinger cat states for particles and excitations, with substantially lower entanglement.