论文标题

Floquet Ising模型中超时相关性的特征,动态和近饱和区域

Characteristic, dynamic, and near saturation regions of Out-of-time-order correlation in Floquet Ising models

论文作者

Shukla, Rohit Kumar, Mishra, Sunil Kumar

论文摘要

我们研究具有和不纵向场的恒定场浮球系统中的超级阶段相关性(OTOC)的特征,动态和饱和度。在OTOC的计算中,我们将局部旋转在纵向和横向方向上作为可观察到的可观察力,分别在Jordan-Wigner Fermions方面是局部和非本地的。我们将OTOC的精确分析解决方案用于具有横向旋转的可集成模型(没有纵向场项)作为可观察到的其他不可集成和不可整合情况的数值解。在这两种情况下,当本地旋转沿横向旋转时,当局部旋转沿纵向旋转时,就需要在两种情况下产生的OTOC脱离统一。离开团结所需的踢脚数取决于可观察到的分离,并且独立于浮quet期和系统大小。在动态区域中,OTOC在两个模型,可集成的(没有纵向场)以及不可整合(具有纵向场)中都显示出幂律的生长。幂律的指数随着可观测值之间的分离而增加。在饱和区域附近,OTOC以非常小的速率线性生长。

We study characteristic, dynamic, and saturation regimes of the out-of-time-order correlation (OTOC) in the constant field Floquet system with and without longitudinal field. In the calculation of OTOC, we take local spins in longitudinal and transverse directions as observables which are local and non-local in terms of Jordan-Wigner fermions, respectively. We use the exact analytical solution of OTOC for the integrable model (without longitudinal field term) with transverse direction spins as observables and numerical solutions for other integrable and nonintegrable cases. OTOCs generated in both cases depart from unity at a kick equal to the separation between the observables when the local spins in the transverse direction and one additional kick is required when the local spins in the longitudinal direction. The number of kicks required to depart from unity depends on the separation between the observables and is independent of the Floquet period and system size. In the dynamic region, OTOCs show power-law growth in both models, the integrable (without longitudinal field) as well as the nonintegrable (with longitudinal field). The exponent of the power-law increases with increasing separation between the observables. Near the saturation region, OTOCs grow linearly with a very small rate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源