论文标题

关于Posets的促销和准划界标签

On Promotion and Quasi-tangled Labelings of Posets

论文作者

Hodges, Eliot

论文摘要

2022年,防御者和克拉维兹(Kravitz)引入了扩展促销活动(表示为$ \ partial $),该地图作用于Poset的一组标签。扩展促销是对Schützenberger的促销操作员的概括,这是一张经过良好研究的地图,它列入了Poset的线性扩展集。众所周知,如果$ l $是$ n $ element poset $ p $的标签,则$ \ partial^{n-1}(l)$是线性扩展。这使我们可以将$ \ partial $视为$ p $所有标签集的分类运算符,我们认为$ p $的线性扩展名为已分类的标签。需要分类的$ \ partial $的$ n-1 $应用的标签称为Tangled;需要$ N-2 $应用程序的标签称为准缠结。除了计算植根树poset的促进纤维的尺寸外,我们还计算了一个相对较大的Poset的准标记,称为膨胀的有叶的叶子,带有放气叶子。给定一个$ n $ element Poset具有独特的最小元素,其属性最小元素具有一个父母,因此,从上述枚举中,该Poset的$ 2(n-1)! - (n-2)!$ quasi tangnangled标签。使用类似的方法,我们概述了一种算法方法来列举要求为任何固定的$ k \ in \ {1,\ ldots,n-2 \} $进行排序的标签。我们还取得了部分进步,以证明猜想的猜想和克拉维兹(Kravitz),以$ n $ element Poset的最大纠结标签数量。

In 2022, Defant and Kravitz introduced extended promotion (denoted $\partial$), a map that acts on the set of labelings of a poset. Extended promotion is a generalization of Schützenberger's promotion operator, a well-studied map that permutes the set of linear extensions of a poset. It is known that if $L$ is a labeling of an $n$-element poset $P$, then $\partial^{n-1}(L)$ is a linear extension. This allows us to regard $\partial$ as a sorting operator on the set of all labelings of $P$, where we think of the linear extensions of $P$ as the labelings which have been sorted. The labelings requiring $n-1$ applications of $\partial$ to be sorted are called tangled; the labelings requiring $n-2$ applications are called quasi-tangled. In addition to computing the sizes of the fibers of promotion for rooted tree posets, we count the quasi-tangled labelings of a relatively large class of posets called inflated rooted trees with deflated leaves. Given an $n$-element poset with a unique minimal element with the property that the minimal element has exactly one parent, it follows from the aforementioned enumeration that this poset has $2(n-1)!-(n-2)!$ quasi-tangled labelings. Using similar methods, we outline an algorithmic approach to enumerating the labelings requiring $n-k-1$ applications to be sorted for any fixed $k\in\{1,\ldots,n-2\}$. We also make partial progress towards proving a conjecture of Defant and Kravitz on the maximum possible number of tangled labelings of an $n$-element poset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源