论文标题
FedComm:了解基于边缘的联合学习的通信协议
FedComm: Understanding Communication Protocols for Edge-based Federated Learning
论文作者
论文摘要
联合学习(FL)使用本地生成的数据和交换模型在设备上训练机器学习(ML)模型,而无需将原始数据传输到遥远的服务器。这种交流会导致沟通开销,并影响FL培训的表现。对沟通协议如何特别有助于FL的性能的了解有限。这种理解对于在设计FL系统时选择正确的通信协议至关重要。本文介绍了FedComm,这是一种基准测试方法,旨在量化优化的应用层协议的影响,即消息队列遥测运输(MQTT),高级消息排队协议(AMQP)和ZEROMQ消息传输协议(ZMTP),以及未经访问的应用程序层协议,即TCP和UDP和UDP和UDP和UDP和UDP和UDP和UDP和UDP和UDP和UDP和UDP和UDP和UDP和UDP。 FedComm在不同的计算和网络压力以及数据包丢失率下,在通信时间和准确性方面衡量FL的总体表现。基于实验室的测试床上的实验表明,TCP的表现优于UDP作为一种非优化的应用程序层协议,其准确性较高,并且对于4G和Wi-Fi网络的通信时间较短。在大多数网络条件下,优化的应用程序层协议(例如AMQP,MQTT和ZMTP)优于未优化的应用程序层协议,与TCP相比,通信时间降低了2.5倍,同时保持准确性。实验结果使我们能够突出许多开放研究问题,以进行进一步研究。 FedComm可从https://github.com/qub-blesson/fedcomm下载。
Federated learning (FL) trains machine learning (ML) models on devices using locally generated data and exchanges models without transferring raw data to a distant server. This exchange incurs a communication overhead and impacts the performance of FL training. There is limited understanding of how communication protocols specifically contribute to the performance of FL. Such an understanding is essential for selecting the right communication protocol when designing an FL system. This paper presents FedComm, a benchmarking methodology to quantify the impact of optimized application layer protocols, namely Message Queue Telemetry Transport (MQTT), Advanced Message Queuing Protocol (AMQP), and ZeroMQ Message Transport Protocol (ZMTP), and non-optimized application layer protocols, namely as TCP and UDP, on the performance of FL. FedComm measures the overall performance of FL in terms of communication time and accuracy under varying computational and network stress and packet loss rates. Experiments on a lab-based testbed demonstrate that TCP outperforms UDP as a non-optimized application layer protocol with higher accuracy and shorter communication times for 4G and Wi-Fi networks. Optimized application layer protocols such as AMQP, MQTT, and ZMTP outperformed non-optimized application layer protocols in most network conditions, resulting in a 2.5x reduction in communication time compared to TCP while maintaining accuracy. The experimental results enable us to highlight a number of open research issues for further investigation. FedComm is available for download from https://github.com/qub-blesson/FedComm.