论文标题

稳定的克林根矢量和偏形新形式

Stable Klingen Vectors and Paramodular Newforms

论文作者

Johnson-Leung, Jennifer, Roberts, Brooks, Schmidt, Ralf

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We introduce the family of stable Klingen congruence subgroups of GSp(4). We use these subgroups to study both local paramodular vectors and Siegel modular forms of degree $2$ with paramodular level. In the first part, when $F$ is a nonarchimedean local field of characteristic zero and $(π,V)$ is an irreducible, admissible representation of GSp(4,F) with trivial central character, we establish a basic connection between the subspaces $V_s(n)$ of $V$ fixed by the stable Klingen congruence subgroups and the spaces of paramodular vectors in $V$ and derive a fundamental partition of the set of paramodular representations into two classes. We determine the spaces $V_s(n)$ for all $(π,V)$ and $n$. We relate the stable Klingen vectors in $V$ to the two paramodular Hecke eigenvalues of $π$ by introducing two stable Klingen Hecke operators and one level lowering operator. In contrast to the paramodular case, these three new operators are given by simple upper block formulas. We prove further results about stable Klingen vectors in $V$ especially when $π$ is generic. In the second part we apply these local results to a Siegel modular newform $F$ of degree $2$ with paramodular level $N$ that is an eigenform of the two paramodular Hecke operators at all primes $p$. We present new formulas relating the Hecke eigenvalues of $F$ at $p$ to the Fourier coefficients $a(S)$ of $F$ for $p^2 \mid N$. We verify that these formulas hold for a large family of examples and indicate how to use our formulas to generally compute Hecke eigenvalues at $p$ from Fourier coefficients of $F$ for $p^2 \mid N$. Finally, for $p^2 \mid N$ we express the formal power series in $p^{-s}$ with coefficients given by the radial Fourier coefficients $a(p^t S)$, $t\geq 0$, as an explicit rational function in $p^{-s}$ with denominator $L_p(s,F)^{-1}$, where $L_p(s,F)$ is the spin $L$-factor of $F$ at $p$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源