论文标题
广义Euler积分的向量空间
Vector Spaces of Generalized Euler Integrals
论文作者
论文摘要
我们研究与广义Euler积分家族相关的矢量空间。它们的尺寸是由非常仿射品种的Euler特征给出的。由粒子物理学的Feynman积分激励,已经使用来自同源代数的工具和$ d $模型的理论进行了研究。我们提出了这些方法之间的概述和发现的新关系。我们还提供新的算法工具。
We study vector spaces associated to a family of generalized Euler integrals. Their dimension is given by the Euler characteristic of a very affine variety. Motivated by Feynman integrals from particle physics, this has been investigated using tools from homological algebra and the theory of $D$-modules. We present an overview and uncover new relations between these approaches. We also provide new algorithmic tools.