论文标题
用于单发骨架的动作识别的零件感知原型图网络
Part-aware Prototypical Graph Network for One-shot Skeleton-based Action Recognition
论文作者
论文摘要
在本文中,我们研究了基于骨架的动作识别的问题,该问题在学习从基础类别到新颖类的可转移表示方面提出了独特的挑战,尤其是对于细粒度的动作。现有的元学习框架通常依赖于空间维度中的身体级表示,这限制了概括以捕获细粒标签空间中细微的视觉差异。为了克服上述限制,我们提出了一种基于单发骨架的动作识别的部分感知的原型代表。我们的方法捕获了两个独特的空间级别的骨架运动模式,一种用于所有身体关节的全球环境,称为身体水平,其他则参与了身体部位的局部空间区域,称为部分级别。我们还设计了一种义务的注意机制,以突出每个动作类别的重要部分。具体而言,我们开发了一个由三个模块组成的部分原型图网络:一个用于双级建模的级联嵌入模块,一个基于注意力的零件融合模块,用于融合零件并生成零件感知的原型,以及与零件应波表示进行分类的匹配模块。我们演示了我们方法对两个基于公共骨架的动作识别数据集的有效性:NTU RGB+D 120和NW-UCLA。
In this paper, we study the problem of one-shot skeleton-based action recognition, which poses unique challenges in learning transferable representation from base classes to novel classes, particularly for fine-grained actions. Existing meta-learning frameworks typically rely on the body-level representations in spatial dimension, which limits the generalisation to capture subtle visual differences in the fine-grained label space. To overcome the above limitation, we propose a part-aware prototypical representation for one-shot skeleton-based action recognition. Our method captures skeleton motion patterns at two distinctive spatial levels, one for global contexts among all body joints, referred to as body level, and the other attends to local spatial regions of body parts, referred to as the part level. We also devise a class-agnostic attention mechanism to highlight important parts for each action class. Specifically, we develop a part-aware prototypical graph network consisting of three modules: a cascaded embedding module for our dual-level modelling, an attention-based part fusion module to fuse parts and generate part-aware prototypes, and a matching module to perform classification with the part-aware representations. We demonstrate the effectiveness of our method on two public skeleton-based action recognition datasets: NTU RGB+D 120 and NW-UCLA.