论文标题

改进基于桦木聚集的基于CICIDS-2017数据集的桦木聚类的基于多层pepceptron(MLP)的网络异常检测

Improving Multilayer-Perceptron(MLP)-based Network Anomaly Detection with Birch Clustering on CICIDS-2017 Dataset

论文作者

Yin, Yuhua, Jang-Jaccard, Julian, Sabrina, Fariza, Kwak, Jin

论文摘要

机器学习算法已被广泛用于入侵检测系统,包括多层感知器(MLP)。在这项研究中,我们提出了一个两阶段模型,该模型结合了桦木聚类算法和MLP分类器,以提高网络异常多分类的性能。在我们提出的方法中,我们首先将桦木或Kmeans作为无监督的聚类算法应用于CICIDS-2017数据集,以预先分组数据。然后,将生成的伪标签作为基于MLP的分类器的训练的附加功能添加。实验结果表明,使用桦木和K-均值聚类进行数据预组件可以改善入侵检测系统的性能。我们的方法可以使用桦木聚类实现多分类的99.73%的精度,这比使用独立的MLP模型的类似研究要好。

Machine learning algorithms have been widely used in intrusion detection systems, including Multi-layer Perceptron (MLP). In this study, we proposed a two-stage model that combines the Birch clustering algorithm and MLP classifier to improve the performance of network anomaly multi-classification. In our proposed method, we first apply Birch or Kmeans as an unsupervised clustering algorithm to the CICIDS-2017 dataset to pre-group the data. The generated pseudo-label is then added as an additional feature to the training of the MLP-based classifier. The experimental results show that using Birch and K-Means clustering for data pre-grouping can improve intrusion detection system performance. Our method can achieve 99.73% accuracy in multi-classification using Birch clustering, which is better than similar researches using a stand-alone MLP model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源