论文标题
通过驱动的超低原子的自组织产生多粒子纠缠状态
Generating multiparticle entangled states by self-organization of driven ultracold atoms
论文作者
论文摘要
我们描述了一种指导超速原子运动自由度的动态演变的机制,该度是通过外部驾驶下的非线性自组织来指向多粒子纠缠的dicke-squeezed态的。研究了两个多体模型的例子。在第一个模型中,外部驱动是一个时间振荡的磁场,从而导致原子间散射自组织。在第二个模型中,该驱动器是一种泵激光器,从而通过光子腔中的光子原子散射导致横向自我组织。我们从数值上证明了原子运动的多片纠缠状态的产生,并讨论了模型的前瞻性实验实现。对于空腔案例,绝热消除光子边带的计算显示,即使在“不良腔”状态下,也会发生明显的动量纠缠产生。结果突出了在量子技术应用中使用原子运动自组织的潜力。
We describe a mechanism for guiding the dynamical evolution of ultracold atomic motional degrees of freedom toward multiparticle entangled Dicke-squeezed states, via nonlinear self-organization under external driving. Two examples of many-body models are investigated. In the first model, the external drive is a temporally oscillating magnetic field leading to self-organization by interatomic scattering. In the second model, the drive is a pump laser leading to transverse self organization by photon-atom scattering in a ring cavity. We numerically demonstrate the generation of multiparticle entangled states of atomic motion and discuss prospective experimental realizations of the models. For the cavity case, the calculations with adiabatically eliminated photonic sidebands show significant momentum entanglement generation can occur even in the "bad cavity" regime. The results highlight the potential for using self-organization of atomic motion in quantum technological applications.