论文标题
人工智能指导在人类对合成生成面的检查中的价值
The Value of AI Guidance in Human Examination of Synthetically-Generated Faces
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Face image synthesis has progressed beyond the point at which humans can effectively distinguish authentic faces from synthetically generated ones. Recently developed synthetic face image detectors boast "better-than-human" discriminative ability, especially those guided by human perceptual intelligence during the model's training process. In this paper, we investigate whether these human-guided synthetic face detectors can assist non-expert human operators in the task of synthetic image detection when compared to models trained without human-guidance. We conducted a large-scale experiment with more than 1,560 subjects classifying whether an image shows an authentic or synthetically-generated face, and annotate regions that supported their decisions. In total, 56,015 annotations across 3,780 unique face images were collected. All subjects first examined samples without any AI support, followed by samples given (a) the AI's decision ("synthetic" or "authentic"), (b) class activation maps illustrating where the model deems salient for its decision, or (c) both the AI's decision and AI's saliency map. Synthetic faces were generated with six modern Generative Adversarial Networks. Interesting observations from this experiment include: (1) models trained with human-guidance offer better support to human examination of face images when compared to models trained traditionally using cross-entropy loss, (2) binary decisions presented to humans offers better support than saliency maps, (3) understanding the AI's accuracy helps humans to increase trust in a given model and thus increase their overall accuracy. This work demonstrates that although humans supported by machines achieve better-than-random accuracy of synthetic face detection, the ways of supplying humans with AI support and of building trust are key factors determining high effectiveness of the human-AI tandem.