论文标题

合作感知的调查和框架:从异质单例到等级合作

A Survey and Framework of Cooperative Perception: From Heterogeneous Singleton to Hierarchical Cooperation

论文作者

Bai, Zhengwei, Wu, Guoyuan, Barth, Matthew J., Liu, Yongkang, Sisbot, Emrah Akin, Oguchi, Kentaro, Huang, Zhitong

论文摘要

感知环境是实现合作驾驶自动化(CDA)的最基本关键之一,该关键被认为是解决当代运输系统的安全性,流动性和可持续性问题的革命性解决方案。尽管现在在计算机视觉的物体感知领域正在发生前所未有的进化,但由于不可避免的物理闭塞和单媒体系统的接受程度有限,最先进的感知方法仍在与复杂的现实世界交通环境中挣扎。基于多个空间分离的感知节点,合作感知(CP)诞生是为了解锁驱动自动化的感知的瓶颈。在本文中,我们全面审查和分析了CP的研究进度,据我们所知,这是第一次提出统一的CP框架。审查了基于不同类型的传感器的CP系统的体系结构和分类学,以显示对CP系统的工作流程和不同结构的高级描述。对节点结构,传感器方式和融合方案进行了审查和分析,并使用全面的文献进行了详细的解释。提出了分层CP框架,然后对现有数据集和模拟器进行审查,以勾勒出CP的整体景观。讨论重点介绍了当前的机遇,开放挑战和预期的未来趋势。

Perceiving the environment is one of the most fundamental keys to enabling Cooperative Driving Automation (CDA), which is regarded as the revolutionary solution to addressing the safety, mobility, and sustainability issues of contemporary transportation systems. Although an unprecedented evolution is now happening in the area of computer vision for object perception, state-of-the-art perception methods are still struggling with sophisticated real-world traffic environments due to the inevitably physical occlusion and limited receptive field of single-vehicle systems. Based on multiple spatially separated perception nodes, Cooperative Perception (CP) is born to unlock the bottleneck of perception for driving automation. In this paper, we comprehensively review and analyze the research progress on CP and, to the best of our knowledge, this is the first time to propose a unified CP framework. Architectures and taxonomy of CP systems based on different types of sensors are reviewed to show a high-level description of the workflow and different structures for CP systems. Node structure, sensor modality, and fusion schemes are reviewed and analyzed with comprehensive literature to provide detailed explanations of specific methods. A Hierarchical CP framework is proposed, followed by a review of existing Datasets and Simulators to sketch an overall landscape of CP. Discussion highlights the current opportunities, open challenges, and anticipated future trends.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源