论文标题
用机器学习来解码重合离子碰撞中的核对称能量事件
Decoding the nuclear symmetry energy event-by-event in heavy-ion collisions with machine learning
论文作者
论文摘要
当前,重型离子碰撞的核对称能量的推论是基于可观察到的和传输模型模拟的比较。在这些方法中,只有在所有被考虑的事件中使用观察值的期望值,但是,在实验和传输模型模拟中,可观察到可观察到的事件。通过使用现代机器学习算法的光梯度增强机(LightGBM),我们提出了一个框架,用于在重型离子碰撞中从事件划分分析中从可观察到的依赖密度依赖的核对称能量。超级量子分子动力学(URQMD)模型模拟用作训练数据。从测试数据中提取的lightGBM事件提取的对称能坡斜率参数也由erqmd从真实情况下的平均分布约为30 meV,并且发现与模型参数中的变化相对于变化是可靠的。此外,LightGBM可以识别对感兴趣的物理产生最大影响的功能,从而提供有价值的见解。我们的研究表明,当前的框架可以是一个强大的工具,并可能提供新的范式来研究重型离子碰撞中的基本物理。
Inferences of the nuclear symmetry energy from heavy-ion collisions are currently based on the comparison of measured observables and transport model simulations. Only the expectation values of observables over all considered events are used in these approaches, however, observables can be obtained event-by-event both in experiments and transport model simulations. By using the light gradient boosting machine (LightGBM), a modern machine-learning algorithm, we present a framework for inferring the density-dependent nuclear symmetry energy from observables in heavy-ion collisions on the event-by-event analysis. The ultrarelativistic quantum molecular dynamics (UrQMD) model simulations are used as training data. The symmetry energy slope parameter extracted with LightGBM event-by-event from test data also by UrQMD has an average spread of approximately 30~MeV from the truth, and is found to be robust against variations in model parameters. In addition, LightGBM can identify features that have the greatest effect on the physics of interest, thereby offering valuable insights. Our study suggests that the present framework can be a powerful tool and may offer a new paradigm to study the underlying physics in heavy-ion collisions.