论文标题

Depthfake:一种基于深度的策略检测DeepFake视频

DepthFake: a depth-based strategy for detecting Deepfake videos

论文作者

Maiano, Luca, Papa, Lorenzo, Vocaj, Ketbjano, Amerini, Irene

论文摘要

在过去的几年中,假内容以令人难以置信的速度增长。社交媒体和在线平台的传播使他们的恶意演员越来越多地传播大规模的传播。同时,由于假图像生成方法的扩散越来越大,已经提出了许多基于深度学习的检测技术。这些方法中的大多数都依赖于从RGB图像中提取显着特征,以通过二进制分类器检测图像是假的或真实的。在本文中,我们提出了一项关于如何使用深度图改善基于经典RGB的方法的研究。深度信息是从具有最新单眼深度估计技术的RGB图像中提取的。在这里,我们证明了深度图对深入训练预训练的架构的有效贡献。实际上,针对faceforensic ++数据集的标准RGB体系结构,一些深层攻击的RGBD方法实际上能够实现3.20%和11.7%的平均改善。

Fake content has grown at an incredible rate over the past few years. The spread of social media and online platforms makes their dissemination on a large scale increasingly accessible by malicious actors. In parallel, due to the growing diffusion of fake image generation methods, many Deep Learning-based detection techniques have been proposed. Most of those methods rely on extracting salient features from RGB images to detect through a binary classifier if the image is fake or real. In this paper, we proposed DepthFake, a study on how to improve classical RGB-based approaches with depth-maps. The depth information is extracted from RGB images with recent monocular depth estimation techniques. Here, we demonstrate the effective contribution of depth-maps to the deepfake detection task on robust pre-trained architectures. The proposed RGBD approach is in fact able to achieve an average improvement of 3.20% and up to 11.7% for some deepfake attacks with respect to standard RGB architectures over the FaceForensic++ dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源