论文标题
深度高光谱和多光谱图像融合与图像间变异性
Deep Hyperspectral and Multispectral Image Fusion with Inter-image Variability
论文作者
论文摘要
高光谱和多光谱图像融合使我们能够克服其较低空间分辨率固有的高光谱成像系统的硬件限制。然而,现有算法通常无法考虑现实的图像获取条件。本文提出了一个一般成像模型,该模型考虑了来自异构源和灵活图像先验的数据的形象间变异性。融合问题被称为最大后验框架中的优化问题。我们介绍了一种原始图像融合方法,一方面,它解决了优化问题,该方法涉及迭代重新持续方案的间形变异性,另一方面,另一方面,它利用基于CNN的轻质CNN网络从数据中学习真实的图像先验。此外,我们提出了一种零射击策略,以无监督的方式直接学习潜在图像的特定图像先验。算法的性能通过实际数据进行说明,视图像间可变性。
Hyperspectral and multispectral image fusion allows us to overcome the hardware limitations of hyperspectral imaging systems inherent to their lower spatial resolution. Nevertheless, existing algorithms usually fail to consider realistic image acquisition conditions. This paper presents a general imaging model that considers inter-image variability of data from heterogeneous sources and flexible image priors. The fusion problem is stated as an optimization problem in the maximum a posteriori framework. We introduce an original image fusion method that, on the one hand, solves the optimization problem accounting for inter-image variability with an iteratively reweighted scheme and, on the other hand, that leverages light-weight CNN-based networks to learn realistic image priors from data. In addition, we propose a zero-shot strategy to directly learn the image-specific prior of the latent images in an unsupervised manner. The performance of the algorithm is illustrated with real data subject to inter-image variability.