论文标题
通过随机的两人分区探索无序的自由费米昂系统中的纠缠特征
Exploring Entanglement Characteristics in Disordered Free Fermion Systems through Random Bi-Partitioning
论文作者
论文摘要
这项研究调查了经过安德森相过渡到局部相的安德森相过渡的无序自由费米式系统的纠缠特性。纠缠熵用于量化纠缠程度,系统随机分为两个子系统。为了探索这一现象,利用了一维紧密结合的费米昂模型和安德森模型。综合数值计算表明,使用随机两分分确定的纠缠熵遵循在DELACALIGET和局部相位的体积缩放,以$ ee \ propto l^d $表示,其中$ d $代表系统的尺寸。此外,分析了短期和远程相关性在纠缠熵中的作用以及子系统位点分布的影响。
This study investigates the entanglement properties of disordered free fermion systems undergoing an Anderson phase transition from a delocalized to a localized phase. The entanglement entropy is employed to quantify the degree of entanglement, with the system randomly divided into two subsystems. To explore this phenomenon, one-dimensional tight-binding fermion models and Anderson models in one, two, and three dimensions are utilized. Comprehensive numerical calculations reveal that the entanglement entropy, determined using random bi-partitioning, follows a volume-law scaling in both the delocalized and localized phases, expressed as $EE \propto L^D$, where $D$ represents the dimension of the system. Furthermore, the role of short and long-range correlations in the entanglement entropy and the impact of the distribution of subsystem sites are analyzed.