论文标题

多组分对流扩散的有限元方法

Finite element methods for multicomponent convection-diffusion

论文作者

Aznaran, Francis R. A., Farrell, Patrick E., Monroe, Charles W., Van-Brunt, Alexander J.

论文摘要

我们开发有限的元素方法,用于耦合稳态Onsager -Stefan--Maxwell方程以压缩的Stokes流。这些方程式描述了低雷诺数下的多组分流,其中通过对流和分子扩散在共同热力学相中的不同化学物种的混合物传输。开发一种用于离散这些方程式的差异公式是具有挑战性的:该公式必须平衡变量和边界数据的物理相关性,规律性假设,分析的障碍性,热力学约束的执行,离散化的易度性以及与瞬态,肛门室外和非理想环境的可扩展性。为了解决这些竞争目标,我们采用了两种增强:第一个实施oonsager-stefan-maxwell方程中的质量平均约束,而其双重二元则修改了Stokes Momentum方程来执行对称性。值得注意的是,尽管有方程式没有拉格朗日结构,但通过这些增强,我们实现了对称鞍点类型的PICARD线性化。利用线性不可逆热力学的结构,我们证明了这种线性化的INF-SUP条件,并确定自动继承良好型的有限元函数空间。我们通过数值示例验证了我们的误差估计,并通过模拟碳氢化合物的微流体混合来说明该方法在非理想流体中的应用。

We develop finite element methods for coupling the steady-state Onsager--Stefan--Maxwell equations to compressible Stokes flow. These equations describe multicomponent flow at low Reynolds number, where a mixture of different chemical species within a common thermodynamic phase is transported by convection and molecular diffusion. Developing a variational formulation for discretizing these equations is challenging: the formulation must balance physical relevance of the variables and boundary data, regularity assumptions, tractability of the analysis, enforcement of thermodynamic constraints, ease of discretization, and extensibility to the transient, anisothermal, and non-ideal settings. To resolve these competing goals, we employ two augmentations: the first enforces the mass-average constraint in the Onsager--Stefan--Maxwell equations, while its dual modifies the Stokes momentum equation to enforce symmetry. Remarkably, with these augmentations we achieve a Picard linearization of symmetric saddle point type, despite the equations not possessing a Lagrangian structure. Exploiting the structure of linear irreversible thermodynamics, we prove the inf-sup condition for this linearization, and identify finite element function spaces that automatically inherit well-posedness. We verify our error estimates with a numerical example, and illustrate the application of the method to non-ideal fluids with a simulation of the microfluidic mixing of hydrocarbons.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源