论文标题

旨在基准可解释的人工智能方法

Towards Benchmarking Explainable Artificial Intelligence Methods

论文作者

Holmberg, Lars

论文摘要

当前主导的人工智能和机器学习技术神经网络基于归纳统计学习。当今的神经网络是信息处理系统缺乏理解和推理能力的信息,因此,他们无法以人类有效的形式解释促进决策。在这项工作中,我们重新访问和使用基本的科学理论哲学作为一种分析镜头,目的是揭示,可以从旨在解释神经网络推动的决策的方法中揭示什么,而不是期望的,而不是期望的。通过进行案例研究,我们研究了在两个平凡的领域,动物和头饰上的可解释性方法的选择。通过我们的研究,我们证明这些方法的有用性取决于人类领域的知识以及我们理解,概括和理性的能力。当目标是进一步了解受过训练的神经网络的优势和劣势时,解释性方法可能很有用。如果我们的目的是使用这些解释性方法来促进可行的决策或建立对ML模型的信任,那么他们需要比今天不太模棱两可。在这项工作中,我们从研究中得出结论,基于解释性方法是对值得信赖的人工智能和机器学习的核心追求。

The currently dominating artificial intelligence and machine learning technology, neural networks, builds on inductive statistical learning. Neural networks of today are information processing systems void of understanding and reasoning capabilities, consequently, they cannot explain promoted decisions in a humanly valid form. In this work, we revisit and use fundamental philosophy of science theories as an analytical lens with the goal of revealing, what can be expected, and more importantly, not expected, from methods that aim to explain decisions promoted by a neural network. By conducting a case study we investigate a selection of explainability method's performance over two mundane domains, animals and headgear. Through our study, we lay bare that the usefulness of these methods relies on human domain knowledge and our ability to understand, generalise and reason. The explainability methods can be useful when the goal is to gain further insights into a trained neural network's strengths and weaknesses. If our aim instead is to use these explainability methods to promote actionable decisions or build trust in ML-models they need to be less ambiguous than they are today. In this work, we conclude from our study, that benchmarking explainability methods, is a central quest towards trustworthy artificial intelligence and machine learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源