论文标题
HyperGraph SBM中的社区检测:鉴于相似性矩阵的精确恢复
Community Detection in the Hypergraph SBM: Exact Recovery Given the Similarity Matrix
论文作者
论文摘要
社区检测是网络科学中的一个基本问题。在本文中,我们考虑了$ HyperGraph $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $(HSBM)的超图中的社区检测,重点是精确的社区恢复。我们研究了在$相似性$ $ $ $ $ w $上运行的多项式时间算法的性能,其中$ w_ {ij} $报告了包含$ i $和$ j $的超补品的数量。在此信息模型下,尽管精确的信息理论限制尚不清楚,但Kim,Bandeira和Goemans衍生出了一个鲜明的门槛,直到$ w $上的自然最小两种估计器成功。由于最坏的情况下,最小两者是NP的,因此他们还提出了半决赛编程(SDP)松弛,并猜想它达到了与最小分类估计量相同的恢复阈值。 在本文中,我们确认了这个猜想。我们还使用几乎线性运行时设计了一种简单且高效的光谱算法,并表明它达到了最小两种阈值。此外,光谱算法在密集的制度中也成功了,并且比以前的方法更有效,将其确定为选择方法。我们对光谱算法的分析至关重要地依赖于$ w $的特征向量上的强$ entrywise $界限。我们的边界灵感来自Abbe,Fan,Wang和Zhong的工作,他们为具有独立条目的对称矩阵的特征向量开发了入门界。尽管相似性矩阵的依赖性结构复杂,但我们证明了相似的入口保证。
Community detection is a fundamental problem in network science. In this paper, we consider community detection in hypergraphs drawn from the $hypergraph$ $stochastic$ $block$ $model$ (HSBM), with a focus on exact community recovery. We study the performance of polynomial-time algorithms which operate on the $similarity$ $matrix$ $W$, where $W_{ij}$ reports the number of hyperedges containing both $i$ and $j$. Under this information model, while the precise information-theoretic limit is unknown, Kim, Bandeira, and Goemans derived a sharp threshold up to which the natural min-bisection estimator on $W$ succeeds. As min-bisection is NP-hard in the worst case, they additionally proposed a semidefinite programming (SDP) relaxation and conjectured that it achieves the same recovery threshold as the min-bisection estimator. In this paper, we confirm this conjecture. We also design a simple and highly efficient spectral algorithm with nearly linear runtime and show that it achieves the min-bisection threshold. Moreover, the spectral algorithm also succeeds in denser regimes and is considerably more efficient than previous approaches, establishing it as the method of choice. Our analysis of the spectral algorithm crucially relies on strong $entrywise$ bounds on the eigenvectors of $W$. Our bounds are inspired by the work of Abbe, Fan, Wang, and Zhong, who developed entrywise bounds for eigenvectors of symmetric matrices with independent entries. Despite the complex dependency structure in similarity matrices, we prove similar entrywise guarantees.