论文标题

皮肤病变细分和分类的调查,审查和未来趋势

A survey, review, and future trends of skin lesion segmentation and classification

论文作者

Hasan, Md. Kamrul, Ahamad, Md. Asif, Yap, Choon Hwai, Yang, Guang

论文摘要

用于皮肤病变分析的计算机辅助诊断或检测方法(CAD)是一个新兴的研究领域,有可能减轻皮肤癌筛查的负担和成本。研究人员最近表示,对开发此类CAD系统的兴趣日益增加,目的是向皮肤科医生提供用户友好的工具,以减少与手动检查所面临或相关的挑战。本文旨在在2011年至2022年之间提供全面的文献调查并审查总共594个出版物(皮肤病变细分的356个,皮肤病变分类为238)。这些文章进行了分析和汇总,以多种不同的方式来贡献有关CAD系统开发方法的重要信息。这些方式包括相关和基本的定义和理论,输入数据(数据集利用,预处理,增强和解决不平衡问题),方法配置(技术,体系结构,模块框架和损失),培训策略(超级参数设置)以及评估标准。我们打算研究各种增强性能的方法,包括合奏和后处理。我们还讨论了这些维度,以根据利用率揭示其当前趋势。此外,我们强调了使用最小数据集评估皮肤病变细分和分类系统的主要困难,以及这些困难的潜在解决方案。披露发现,建议和趋势,以告知未来的研究,以开发自动化和健壮的CAD系统进行皮肤病变分析。

The Computer-aided Diagnosis or Detection (CAD) approach for skin lesion analysis is an emerging field of research that has the potential to alleviate the burden and cost of skin cancer screening. Researchers have recently indicated increasing interest in developing such CAD systems, with the intention of providing a user-friendly tool to dermatologists to reduce the challenges encountered or associated with manual inspection. This article aims to provide a comprehensive literature survey and review of a total of 594 publications (356 for skin lesion segmentation and 238 for skin lesion classification) published between 2011 and 2022. These articles are analyzed and summarized in a number of different ways to contribute vital information regarding the methods for the development of CAD systems. These ways include relevant and essential definitions and theories, input data (dataset utilization, preprocessing, augmentations, and fixing imbalance problems), method configuration (techniques, architectures, module frameworks, and losses), training tactics (hyperparameter settings), and evaluation criteria. We intend to investigate a variety of performance-enhancing approaches, including ensemble and post-processing. We also discuss these dimensions to reveal their current trends based on utilization frequencies. In addition, we highlight the primary difficulties associated with evaluating skin lesion segmentation and classification systems using minimal datasets, as well as the potential solutions to these difficulties. Findings, recommendations, and trends are disclosed to inform future research on developing an automated and robust CAD system for skin lesion analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源