论文标题

基于系数的正则分配回归

Coefficient-based Regularized Distribution Regression

论文作者

Mao, Yuan, Shi, Lei, Guo, Zheng-Chu

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In this paper, we consider the coefficient-based regularized distribution regression which aims to regress from probability measures to real-valued responses over a reproducing kernel Hilbert space (RKHS), where the regularization is put on the coefficients and kernels are assumed to be indefinite. The algorithm involves two stages of sampling, the first stage sample consists of distributions and the second stage sample is obtained from these distributions. Asymptotic behaviors of the algorithm in different regularity ranges of the regression function are comprehensively studied and learning rates are derived via integral operator techniques. We get the optimal rates under some mild conditions, which matches the one-stage sampled minimax optimal rate. Compared with the kernel methods for distribution regression in the literature, the algorithm under consideration does not require the kernel to be symmetric and positive semi-definite and hence provides a simple paradigm for designing indefinite kernel methods, which enriches the theme of the distribution regression. To the best of our knowledge, this is the first result for distribution regression with indefinite kernels, and our algorithm can improve the saturation effect.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源