论文标题
部分可观测时空混沌系统的无模型预测
Ramsey theory constructions from hypergraph matchings
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We give asymptotically optimal constructions in generalized Ramsey theory using results about conflict-free hypergraph matchings. For example, we present an edge-coloring of $K_{n,n}$ with $2n/3 + o(n)$ colors such that each $4$-cycle receives at least three colors on its edges. This answers a question of Axenovich, Füredi and the second author (On generalized Ramsey theory: the bipartite case, J. Combin. Theory Ser B 79 (2000), 66--86). We also exhibit an edge-coloring of $K_n$ with $5n/6+o(n)$ colors that assigns each copy of $K_4$ at least five colors. This gives an alternative very short solution to an old question of Erdős and Gyárfás that was recently answered by Bennett, Cushman, Dudek, and Pralat by analyzing a colored modification of the triangle removal process.