论文标题
使用自动编码器的新生儿和胎儿大脑中新生儿和胎儿大脑扩散MRI的切片估计
Slice estimation in diffusion MRI of neonatal and fetal brains in image and spherical harmonics domains using autoencoders
论文作者
论文摘要
发育中的大脑的扩散MRI(DMRI)可以为白质发育提供宝贵的见解。但是,胎儿DMRI中的切片厚度通常很高(即3-5 mm)以冷冻面内运动,从而降低了DMRI信号对基础解剖结构的敏感性。在这项研究中,我们使用RAW DMRI信号及其球形谐波(SH)表示,旨在通过使用自动编码器来学习潜在空间中脑切片的无监督有效表示。我们首先了解并定量验证自动编码器正在开发的人类Connectome项目前新生儿数据,并进一步测试胎儿数据的方法。我们的结果表明,信号域中的自动编码器更好地合成了原始信号。有趣的是,通过使用经过SH系数训练的自动编码器,最好在丢失的切片中恢复分数各向异性,并且在较小程度上可以在缺失的切片中恢复。与使用原始信号训练的自动编码器以及常规的原始信号和SH系数的常规插值方法进行了比较。从这些结果中,我们得出的结论是,如果原始信号的旨在恢复,则应在信号域中进行缺失/损坏的切片的恢复,如果扩散张量性属性(即分数各向异性)针对的(即分数各向异性),则应在SH域中进行。值得注意的是,训练有素的自动编码器能够使用较小数量的扩散梯度和较低的B值概括为胎儿DMRI数据,在那里我们定性地显示了估计的扩散张量图的一致性。
Diffusion MRI (dMRI) of the developing brain can provide valuable insights into the white matter development. However, slice thickness in fetal dMRI is typically high (i.e., 3-5 mm) to freeze the in-plane motion, which reduces the sensitivity of the dMRI signal to the underlying anatomy. In this study, we aim at overcoming this problem by using autoencoders to learn unsupervised efficient representations of brain slices in a latent space, using raw dMRI signals and their spherical harmonics (SH) representation. We first learn and quantitatively validate the autoencoders on the developing Human Connectome Project pre-term newborn data, and further test the method on fetal data. Our results show that the autoencoder in the signal domain better synthesized the raw signal. Interestingly, the fractional anisotropy and, to a lesser extent, the mean diffusivity, are best recovered in missing slices by using the autoencoder trained with SH coefficients. A comparison was performed with the same maps reconstructed using an autoencoder trained with raw signals, as well as conventional interpolation methods of raw signals and SH coefficients. From these results, we conclude that the recovery of missing/corrupted slices should be performed in the signal domain if the raw signal is aimed to be recovered, and in the SH domain if diffusion tensor properties (i.e., fractional anisotropy) are targeted. Notably, the trained autoencoders were able to generalize to fetal dMRI data acquired using a much smaller number of diffusion gradients and a lower b-value, where we qualitatively show the consistency of the estimated diffusion tensor maps.