论文标题
Kähler电位空间中的测量学的度量下限估计值
A Metric Lower Bound Estimate for Geodesics in the Space of Kähler Potentials
论文作者
论文摘要
在本文中,我们为复杂的溶液中第二小最小的特征值建立了一个正面的下限估计值,用于退化的复杂蒙格 - 安培方程。结果,我们发现在Kähler潜力的空间中,在$ c^2 $ norm中,任何两个点彼此都可以通过地理位置连接,而相关指标不会退化。
In this paper we establish a positive lower bound estimate for the second smallest eigenvalue of the complex Hessian of solutions to a degenerate complex Monge-Ampère equation. As a consequence, we find that in the space of Kähler potentials any two points close to each other in $C^2$ norm can be connected by a geodesic along which the associated metrics do not degenerate.