论文标题
存在多点边界绿色功能的弦弦链层演化(SLE)的功能
Existence of multi-point boundary Green's function for chordal Schramm-Loewner evolution (SLE)
论文作者
论文摘要
在本文中,我们证明,对于$κ\(0,8)$,存在$ n $ point Boundare Green的指数$ \frac8κ-1$的功能,用于弦乐SLE $_κ$。我们还证明,在紧凑的集合上,收敛是均匀的,绿色的功能是连续的。我们还为绿色的功能提供了最新的范围。
In the paper we prove that, for $κ\in(0,8)$, the $n$-point boundary Green's function of exponent $\frac8κ-1$ for chordal SLE$_κ$ exists. We also prove that the convergence is uniform over compact sets and the Green's function is continuous. We also give up-to-constant bounds for the Green's function.