论文标题
贝叶斯通过尖峰神经网络的持续学习
Bayesian Continual Learning via Spiking Neural Networks
论文作者
论文摘要
生物智能的主要特征之一是能源效率,持续适应能力以及通过不确定性量化的风险管理。到目前为止,神经形态工程主要是由实施节能机器的目标驱动的,这些机器从生物学大脑的基于时间的计算范式中获得了灵感。在本文中,我们采取步骤朝着设计神经形态系统的设计,这些系统能够适应改变学习任务,同时产生良好的不确定性量化估计。为此,我们在贝叶斯持续学习框架内得出了在线学习规则(SNN)。在其中,每个突触重量都由参数表示,这些参数量化了先验知识和观察到的数据引起的当前认知不确定性。在观察到数据时,提出的在线规则以流方式更新了分布参数。我们实例化了实用值和二进制突触权重的建议方法。使用英特尔熔岩平台的实验结果表明,贝叶斯在适应和不确定性定量方面的频繁学习方面的优点。
Among the main features of biological intelligence are energy efficiency, capacity for continual adaptation, and risk management via uncertainty quantification. Neuromorphic engineering has been thus far mostly driven by the goal of implementing energy-efficient machines that take inspiration from the time-based computing paradigm of biological brains. In this paper, we take steps towards the design of neuromorphic systems that are capable of adaptation to changing learning tasks, while producing well-calibrated uncertainty quantification estimates. To this end, we derive online learning rules for spiking neural networks (SNNs) within a Bayesian continual learning framework. In it, each synaptic weight is represented by parameters that quantify the current epistemic uncertainty resulting from prior knowledge and observed data. The proposed online rules update the distribution parameters in a streaming fashion as data are observed. We instantiate the proposed approach for both real-valued and binary synaptic weights. Experimental results using Intel's Lava platform show the merits of Bayesian over frequentist learning in terms of capacity for adaptation and uncertainty quantification.