论文标题

识别自轭分区

Identifying Self-Conjugate Partitions

论文作者

Odom, Rebecca

论文摘要

正整数$ n $的分区定义为非插入序列$ p = [y__0,y_1,...,...,y_m] $的正整数$,总和为$ n $,其中$ y_i $称为分区的$ parts $。年轻的图是使用一行框的分区的视觉表示,其中每一行盒子对应于零件。共轭分区类似于矩阵的转置;我们用列或零件本身的零件索引切换行。自轭分区是等于它们的共轭的分区。以前,验证分区是否是自轭的唯一已知方法是通过使用年轻图。在这项研究中,通过证明初步的引理和定理有关易于识别形状的对称形状的定理,我们就会取得主要结果:简单地添加适当的零件的多样性,我们可以在没有年轻图的情况下表明分区是否是自偶联的。

A partition of a positive integer $n$ is defined as a non-increasing sequence $P = [y_0, y_1, ..., y_m]$ of positive integers which sum to $n$, where the $y_i$ are called the $parts$ of the partition. A Young diagram is a visual representation of a partition using rows of boxes, where each row of boxes corresponds to a part. The conjugate partition is similar to a transpose of a matrix; we switch the rows with columns, or the index of a part with the part itself. Self-conjugate partitions are partitions that are equal to their conjugate; previously, the only known way to verify whether a partition is self-conjugate was through the use of a Young diagram. In this research, by proving preliminary lemmas and theorems about easily identifiable shapes which are symmetric, we come to the main result: by simply adding the multiplicities of parts appropriately, we can show whether or not a partition is self-conjugate without the use of a Young diagram.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源