论文标题
(Quasi)跨维度和TCC结合的Sitter解决方案
(Quasi-) de Sitter solutions across dimensions and the TCC bound
论文作者
论文摘要
在这项工作中,我们以$ d $维(Quasi-)de Sitter Spacetime的弦理论解决方案的存在,价格为$ 3 \ leq d \ leq 10 $。考虑到经典的压缩,我们得出无需定理,适用于一般$ d $。我们使用它们以$ d \ geq 7 $的价格排除(Quasi-)de Sitter解决方案。此外,在$ d = 6,5 $中发现这种解决方案不可能存在。对于每个无关定理,我们进一步计算了Swampland de Sitter的$ D $依赖性参数$ c $,$ M_P \ frac {| \ nabla v |} {v} {v} {v} \ geq c $。值得注意的是,TCC绑定的$ C \ geq \ frac {2} {\ sqrt {(d-1)(d-2)}}} $在$ d \ geq 4 $中得到了完全满足,并带有几种饱和情况。但是,我们观察到违反了$ d = 3 $的限制。我们最终对文献中的相关建议,赃物距离的猜想及其衰减率以及所谓的加速扩张结合。
In this work, we investigate the existence of string theory solutions with a $d$-dimensional (quasi-) de Sitter spacetime, for $3 \leq d \leq 10$. Considering classical compactifications, we derive no-go theorems valid for general $d$. We use them to exclude (quasi-) de Sitter solutions for $d \geq 7$. In addition, such solutions are found unlikely to exist in $d=6,5$. For each no-go theorem, we further compute the $d$-dependent parameter $c$ of the swampland de Sitter conjecture, $M_p \frac{|\nabla V|}{V} \geq c$. Remarkably, the TCC bound $c \geq \frac{2}{\sqrt{(d-1)(d-2)}}$ is then perfectly satisfied for $d \geq 4$, with several saturation cases. However, we observe a violation of this bound in $d=3$. We finally comment on related proposals in the literature, on the swampland distance conjecture and its decay rate, and on the so-called accelerated expansion bound.