论文标题

设定值观测值的自适应过滤算法 - 未标记和匿名数据的对称测量方法

Adaptive Filtering Algorithms for Set-Valued Observations -- Symmetric Measurement Approach to Unlabeled and Anonymized Data

论文作者

Krishnamurthy, Vikram

论文摘要

假设$ l $同时独立的随机系统会产生观测值,其中每个系统的观察结果取决于该系统的基础参数。观察结果是未标记的(匿名),因为分析师不知道哪个观察到哪个随机系统。分析师如何估计$ L $系统的基础参数?由于每个时间的匿名观测值是一组无序的L测量值(而不是向量),因此无法直接使用经典的随机梯度算法。通过使用对称多项式,我们制定了一个对称测量方程,该方程将观测值映射到唯一的向量。通过利用多变量多项式的代数环是单变量多项式环上的一个独特的分解域,我们构建了一种自适应滤波算法,可以产生基本参数的统计一致估计。我们分析了这些估计值的渐近协方差,以量化匿名的效果。最后,我们根据最大aposteriori贝叶斯估计量的误差概率来表征观测值的匿名性。利用Blackwell的平均保留点差优势,我们构建了噪声密度的部分排序,将观测值的匿名性与自适应滤波算法的渐近协方差联系在一起。

Suppose $L$ simultaneous independent stochastic systems generate observations, where the observations from each system depend on the underlying parameter of that system. The observations are unlabeled (anonymized), in the sense that an analyst does not know which observation came from which stochastic system. How can the analyst estimate the underlying parameters of the $L$ systems? Since the anonymized observations at each time are an unordered set of L measurements (rather than a vector), classical stochastic gradient algorithms cannot be directly used. By using symmetric polynomials, we formulate a symmetric measurement equation that maps the observation set to a unique vector. By exploiting that fact that the algebraic ring of multi-variable polynomials is a unique factorization domain over the ring of one-variable polynomials, we construct an adaptive filtering algorithm that yields a statistically consistent estimate of the underlying parameters. We analyze the asymptotic covariance of these estimates to quantify the effect of anonymization. Finally, we characterize the anonymity of the observations in terms of the error probability of the maximum aposteriori Bayesian estimator. Using Blackwell dominance of mean preserving spreads, we construct a partial ordering of the noise densities which relates the anonymity of the observations to the asymptotic covariance of the adaptive filtering algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源