论文标题

通过利用损失轨迹的会员推理攻击

Membership Inference Attacks by Exploiting Loss Trajectory

论文作者

Liu, Yiyong, Zhao, Zhengyu, Backes, Michael, Zhang, Yang

论文摘要

机器学习模型容易受到会员推理攻击的影响,在这种攻击中,对手的目的是预测目标模型培训数据集中是否包含特定样本。现有的攻击方法通常仅从给定的目标模型中利用输出信息(主要是损失)。结果,在成员和非成员样本都产生类似小损失的实际情况下,这些方法自然无法区分它们。为了解决这一限制,在本文中,我们提出了一种称为\ System的新攻击方法,该方法可以利用目标模型的整个培训过程中的成员资格信息来改善攻击性能。为了将攻击安装在共同的黑盒环境中,我们利用知识蒸馏,并通过在不同蒸馏时期的一系列中间模型中评估的损失来表示成员资格信息,即\ emph {蒸馏损失轨迹},以及来自给定目标模型的损失。对不同数据集和模型体系结构的实验结果证明了我们在不同指标方面的攻击优势。例如,在Cinic-10上,我们的攻击至少达到6 $ \ times $ $阳性速率以低阳性速率0.1 \%的速率高于现有方法。进一步的分析表明,在更严格的情况下,我们攻击的总体有效性。

Machine learning models are vulnerable to membership inference attacks in which an adversary aims to predict whether or not a particular sample was contained in the target model's training dataset. Existing attack methods have commonly exploited the output information (mostly, losses) solely from the given target model. As a result, in practical scenarios where both the member and non-member samples yield similarly small losses, these methods are naturally unable to differentiate between them. To address this limitation, in this paper, we propose a new attack method, called \system, which can exploit the membership information from the whole training process of the target model for improving the attack performance. To mount the attack in the common black-box setting, we leverage knowledge distillation, and represent the membership information by the losses evaluated on a sequence of intermediate models at different distillation epochs, namely \emph{distilled loss trajectory}, together with the loss from the given target model. Experimental results over different datasets and model architectures demonstrate the great advantage of our attack in terms of different metrics. For example, on CINIC-10, our attack achieves at least 6$\times$ higher true-positive rate at a low false-positive rate of 0.1\% than existing methods. Further analysis demonstrates the general effectiveness of our attack in more strict scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源