论文标题

n+3h散射的变异蒙特卡洛计算

Variational Monte Carlo Calculations of n+3H Scattering

论文作者

Flores, Abraham R., Nollett, Kenneth M.

论文摘要

核物理领域的最高目标是统一绑定状态和未结合状态的Ab-Initio治疗方法。位置空间量子蒙特卡洛(QMC)方法在光系统中有成功的结合状态计算历史悠久,但到目前为止,对未结合系统的应用很少。在这里,我们介绍了一种数值方法,以提高QMC中未结合状态计算的效率和准确性,作为初始应用,我们使用变体蒙特卡洛(VMC)波函数来计算中子 - 三位化系统的散射可观察到。该方法包括在所有粒子相互作用的短距离区域的积分中推断出波函数中的远程振幅。这种使用整体关系的方法在文献中已经很好地确定。在这里,我们为QMC框架开发它。我们通过从直接评估和积分关系计算出的短范围光谱重叠函数之间进行一致性检查验证代码;散射幅度是这些重叠的远距离渐近学。使用相同电位与已发布的基准计算进行比较表明,当应用于当前的VMC波函数时,积分方法比从相同的变异波函数的直接评估中产生更准确的散射散射。但是,它仍然与确切的结果明显不同。然后,我们使用各种相互作用来介绍中子三体系统的相位移位和混合参数。集成方法的应用为在Green功能蒙特卡洛(GFMC)计算中使用铺平了道路。在GFMC中,波功能更精确,但是尾巴的高精度收敛速度很慢,并且读取幅度还有其他困难。整体方法将解决剩下的两个问题。

A paramount goal in the field of nuclear physics is to unify ab-initio treatments of bound and unbound states. The position-space quantum Monte Carlo (QMC) methods have a long history of successful bound state calculations in light systems but so far have seen very little application to unbound systems. Here we introduce a numerical method to improve the efficiency and accuracy of unbound-state calculations in QMC, and as an initial application we compute scattering observables for the neutron-triton system using variational Monte Carlo (VMC) wave functions. The method consists of inferring long-range amplitudes in the wave function from integrals over the short-ranged region where all the particles interact. This approach using integral relations is well established in the literature; here we develop it for the QMC framework. We validate our code with a consistency check between short-range spectroscopic overlap functions computed from direct evaluation and from the integral relations; scattering amplitudes are long-range asymptotics of those overlaps. Comparison against published benchmark calculations using the same potential demonstrates that the integral method, when applied to the current VMC wave functions, produces more accurate scattering observables than direct evaluation from the same variational wave function. However, it still differs noticeably from exact results. We then present phase shifts and mixing parameters for the neutron-triton system using various interactions. Application of the integral method here paves the way for its use in Green's function Monte Carlo (GFMC) calculations. In GFMC the wave functions are more precise, but high-precision convergence of their tails is slow, and there are additional difficulties in reading out amplitudes. The integral methods will address both of those remaining problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源