论文标题

建模偏航未对准执行器磁盘的归纳,推力和力量

Modeling the induction, thrust, and power of a yaw misaligned actuator disk

论文作者

Heck, Kirby S., Johlas, Hannah M., Howland, Michael F.

论文摘要

集体风电场控制,其中风力涡轮机以单独的次优策略进行操作,以使总农场受益,这表明有可能减少尾流相互作用并增加农场能源的产量。但是,用于流量控制的现有尾流模型通常使用简化的经验表达式估算偏航未对准的涡轮机的推力和功率,这些表达式需要昂贵的校准数据,并且在涡轮机型号之间无法准确推断。偏航风力涡轮机的推力,尾流速度不足,尾流偏转和功率取决于其诱导的速度。在这里,我们扩展了经典的一维动量理论,以模拟偏航未对准的执行器磁盘的诱导。诱导,推力,初始唤醒速度和功率的分析表达式是偏航角和推力系数的函数。分析模型可针对偏航执行器磁盘的大型涡流模拟进行验证。由于诱导取决于偏航和推力系数,因此由偏航执行器磁盘产生的功率始终大于$ \ cos^3(γ)$模型,其中$γ$是yaw。偏航损失的功率取决于推力系数。开发和验证的推力系数的分析表达式最大化功率的推力系数。最后,使用开发的感应模型作为湍流远操模型的初始条件,我们证明了与独立转向或感应控制相比,由于感应对推力系数和偏航角的关节依赖性,与独立转向或感应控制相比,将唤醒转向和推力(诱导)控制能够增加阵列功率。

Collective wind farm flow control, where wind turbines are operated in an individually suboptimal strategy to benefit the aggregate farm, has demonstrated potential to reduce wake interactions and increase farm energy production. However, existing wake models used for flow control often estimate the thrust and power of yaw misaligned turbines using simplified empirical expressions which require expensive calibration data and do not accurately extrapolate between turbine models. The thrust, wake velocity deficit, wake deflection, and power of a yawed wind turbine depend on its induced velocity. Here, we extend classical one-dimensional momentum theory to model the induction of a yaw misaligned actuator disk. Analytical expressions for the induction, thrust, initial wake velocities, and power are developed as a function of the yaw angle and thrust coefficient. The analytical model is validated against large eddy simulations of a yawed actuator disk. Because the induction depends on the yaw and thrust coefficient, the power generated by a yawed actuator disk will always be greater than a $\cos^3(γ)$ model suggests, where $γ$ is yaw. The power lost by yaw depends on the thrust coefficient. An analytical expression for the thrust coefficient that maximizes power, depending on the yaw, is developed and validated. Finally, using the developed induction model as an initial condition for a turbulent far-wake model, we demonstrate how combining wake steering and thrust (induction) control can increase array power, compared to either independent steering or induction control, due to the joint dependence of the induction on the thrust coefficient and yaw angle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源