论文标题

改善了非可逆马尔可夫链中松弛时间的估计

Improved Estimation of Relaxation Time in Non-reversible Markov Chains

论文作者

Wolfer, Geoffrey, Kontorovich, Aryeh

论文摘要

我们表明,在持续的乘法错误中,以$ \tildeθ\ left(\ frac {1} {1} {γ_{γ_ {γ{γ{ps persssf}}的顺序,用于估算估算伪贡克马尔可夫链的伪谱间隔$γ_ { \ right),$$,其中$π_\ star $是最低固定概率,在可逆环境中恢复了已知的界限,以估计绝对光谱差距[Hsu等,2019],并解决了Wolfer和Kontorovich的开放问题[2019]。此外,我们通过使其完全适应数据,减少置信区间并降低计算复杂性来增强已知的经验程序。一路上,我们得出了伪谱间隙的新特性,并引入了随机基质的可逆扩张的概念。

We show that the minimax sample complexity for estimating the pseudo-spectral gap $γ_{\mathsf{ps}}$ of an ergodic Markov chain in constant multiplicative error is of the order of $$\tildeΘ\left( \frac{1}{γ_{\mathsf{ps}} π_{\star}} \right),$$ where $π_\star$ is the minimum stationary probability, recovering the known bound in the reversible setting for estimating the absolute spectral gap [Hsu et al., 2019], and resolving an open problem of Wolfer and Kontorovich [2019]. Furthermore, we strengthen the known empirical procedure by making it fully-adaptive to the data, thinning the confidence intervals and reducing the computational complexity. Along the way, we derive new properties of the pseudo-spectral gap and introduce the notion of a reversible dilation of a stochastic matrix.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源